Part Number Hot Search : 
EMIF0 LW324 12A48 B1862 TS272IBN MAX1634 A1050 VISHAY
Product Description
Full Text Search
 

To Download HUF75345S3ST Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HUF75345G3, HUF75345P3, HUF75345S3S
Data Sheet March 2005
75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
These N-Channel power MOSFETs are manufactured using the innovative UltraFET(R) process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Formerly developmental type TA75345.
Features
* 75A, 55V * Simulation Models - Temperature Compensated PSPICE(R) and SABERTM Models - Thermal Impedance SPICE and SABER Models Available on the WEB at: www.fairchildsemi.com * Peak Current vs Pulse Width Curve * UIS Rating Curve * Related Literature - TB334, "Guidelines for Soldering Surface Mount Components to PC Boards"
Symbol
D
Ordering Information
PART NUMBER HUF75345G3 HUF75345P3 HUF75345S3S PACKAGE TO-247 TO-220AB TO-263AB BRAND 75345G 75345P 75345S
S G
NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75345S3ST.
Packaging
JEDEC STYLE TO-247
SOURCE DRAIN GATE DRAIN (FLANGE)
JEDEC TO-220AB
SOURCE DRAIN GATE
DRAIN (TAB)
JEDEC TO-263AB
GATE SOURCE
DRAIN (FLANGE)
Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html For severe environments, see our Automotive HUFA series. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 55 55 20 75 Figure 4 Figure 6 325 2.17 -55 to 175 300 260 W W/oC
oC oC oC
V V V A
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE: 1. TJ = 25oC to 150oC.
Electrical Specifications
PARAMETER OFF STATE SPECIFICATIONS
TC = 25oC, Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current
BVDSS IDSS IGSS VGS(TH) rDS(ON) RJC RJA
ID = 250A, VGS = 0V (Figure 11) VDS = 50V, VGS = 0V VDS = 45V, VGS = 0V, TC = 150oC VGS = 20V VGS = VDS, ID = 250A (Figure 10) ID = 75A, VGS = 10V (Figure 9) (Figure 3) TO-247 TO-220, TO-263
55 -
-
1 250 100
V A A nA
Gate to Source Leakage Current ON STATE SPECIFICATIONS Gate to Source Threshold Voltage Drain to Source On Resistance THERMAL SPECIFICATIONS Thermal Resistance Junction to Case Thermal Resistance Junction to Ambient
2 -
0.006
4 0.007
V W
oC/W oC/W oC/W
-
-
0.46 30 62
SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time GATE CHARGE SPECIFICATIONS Total Gate Charge Gate Charge at 10V Threshold Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge Qg(TOT) Qg(10) Qg(TH) Qgs Qgd VGS = 0V to 20V VGS = 0V to 10V VGS = 0V to 2V VDD = 30V, ID 75A, RL = 0.4 Ig(REF) = 1.0mA (Figure 13) 220 125 6.8 14 58 275 165 10 nC nC nC nC nC tON td(ON) tr td(OFF) tf tOFF VDD = 30V, ID 75A, RL = 0.4, VGS = 10V, RGS = 2.5 14 118 42 26 195 98 ns ns ns ns ns ns
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S
Electrical Specifications
PARAMETER CAPACITANCE SPECIFICATIONS Input Capacitance Output Capacitance Reverse Transfer Capacitance CISS COSS CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) 4000 1450 450 pF pF pF TC = 25oC, Unless Otherwise Specified (Continued) SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Specifications
PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge SYMBOL VSD trr QRR ISD = 75A ISD = 75A, dISD/dt = 100A/s ISD = 75A, dISD/dt = 100A/s TEST CONDITIONS MIN TYP MAX 1.25 55 80 UNITS V ns nC
Typical Performance Curves
1.2 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 60 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 80
40
20
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE
2 1 THERMAL IMPEDANCE ZJC, NORMALIZED DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01
PDM
0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZJC x RJC + TC 10-3 10-2 10-1 100 101
SINGLE PULSE 0.01 10-5 10-4
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S Typical Performance Curves
2000
(Continued)
TC = 25oC
IDM, PEAK CURRENT (A)
1000
FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150
VGS = 20V VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
100
50 10-5
10-4
10-3
10-2 t, PULSE WIDTH (s)
10-1
100
101
FIGURE 4. PEAK CURRENT CAPABILITY
1000 TJ = MAX RATED TC = 25oC ID, DRAIN CURRENT (A)
1000 IAS, AVALANCHE CURRENT (A) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
100s
100
1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) VDSS(MAX) = 55V 1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 100 200 10ms
STARTING TJ = 25oC
STARTING TJ = 150oC
10 0.01
0.1
1
10
100
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
150 VGS = 20V VGS = 10V VGS = 7V VGS = 6V
150 PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX ID, DRAIN CURRENT (A) VGS = 5V 120
ID, DRAIN CURRENT (A)
120
90
90
60
60 25oC 30 175oC -55oC 4.5 VDD = 15V 6.0 7.5
30
0
PULSE DURATION = 80s DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 4
0
0
1.5
3.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
VGS , GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
FIGURE 8. TRANSFER CHARACTERISTICS
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S Typical Performance Curves
2.5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80s, VGS = 10V, ID = 75A DUTY CYCLE = 0.5% MAX NORMALIZED GATE THRESHOLD VOLTAGE 2.0 1.0
(Continued)
1.2 VGS = VDS, ID = 250A
1.5
0.8
1.0
0.6
0.5 -80
-40
0
40
80
120
160
200
0.4 -80
-40
TJ, JUNCTION TEMPERATURE (oC)
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
200
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE
1.3 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250A
7000 6000 C, CAPACITANCE (pF) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS CDS + CGD CISS
1.2
5000 4000 3000 2000 1000
1.1
1.0
0.9
COSS CRSS
0.8 -80
0 -40 0 40 80 120 160 200 0 10 20 30 40 50 60 TJ , JUNCTION TEMPERATURE (oC) VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10 VGS , GATE TO SOURCE VOLTAGE (V) VDD = 30V 8
6
4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 55A ID = 35A ID = 20A 0 25 75 50 Qg, GATE CHARGE (nC) 100 125
2
0
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S Test Circuits and Waveforms
VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP RG IAS VDD tP VDS VDD
+
0V
IAS 0.01
0 tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS RL VDD VDS VGS = 20V VGS
+
Qg(TOT)
Qg(10) VDD VGS VGS = 2V 0 Qg(TH) Qgs Ig(REF) 0 Qgd VGS = 10V
DUT IG(REF)
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON td(ON) RL VDS
+
tOFF td(OFF) tr tf 90%
90%
VGS
DUT RGS
VDD 0
10% 90%
10%
VGS VGS 0 10%
50% PULSE WIDTH
50%
FIGURE 18. SWITCHING TIME TEST CIRCUIT
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S PSPICE Electrical Model
.SUBCKT HUF75345 2 1 3 ;
CA 12 8 5.55e-9 CB 15 14 5.55e-9 CIN 6 8 3.45e-9
10 RSLC1 51 ESLC 50 EBREAK MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE 7 RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 14 IT 15 17 RBREAK 18 RVTEMP 19 SOURCE 3 RLDRAIN DBREAK 11 + 17 18 DBODY
rev 3 Feb 99
LDRAIN DPLCAP 5 DRAIN 2
RSLC2
ESG + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 6 8 EVTHRES + 19 8 6
IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 KGATE LSOURCE LGATE 0.0085 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-4 RGATE 9 20 0.36 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD
-
-
VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3.5))} .MODEL DBODYMOD D (IS = 6e-12 RS = 1.4e-3 IKF = 20 XTI = 5 TRS1 = 2.75e-3 TRS2 = 5.0e-6 CJO = 5.5e-9 TT = 5.9e-8 M = 0.5 VJ = 0.75) .MODEL DBREAKMOD D (RS = 2.8e-2 IKF = 30 TRS1 = -4.0e-3 TRS2 = 1.0e-6) .MODEL DPLCAPMOD D (CJO = 6.75e-9 IS = 1e-30 M = 0.88 VJ = 1.45 FC = 0.5) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 13.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36) .MODEL MSTROMOD NMOS (VTO = 3.23 KP = 96 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Lambda = 0.06) .MODEL MWEAKMOD NMOS (VTO = 2.35 KP =0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6) .MODEL RBREAKMOD RES (TC1 = 8.0e-4 TC2 = 4.0e-6) .MODEL RDRAINMOD RES (TC1 = 1.5e-1 TC2 = 6.5e-4) .MODEL RSLCMOD RES (TC1 = 1.0e-4 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.0e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -2.6e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 1.45e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 .ENDS ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -9.00 VOFF= -4.00) VON = -4.00 VOFF= -9.00) VON = 0.00 VOFF= 0.50) VON = 0.50 VOFF= 0.00)
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
(c)2005 Fairchild Semiconductor Corporation
-
EBREAK 11 7 17 18 56.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1
5 51
+
DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD
RDRAIN 21 16
-
VBAT +
8 22 RVTHRES
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S SABER Electrical Model
REV 3 February 1999 template huf75345 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 6e-12, xti = 5, cjo = 5.5e-9, tt = 5.9e-8, m=0.5, vj=0.75) d..model dbreakmod = () d..model dplcapmod = (cjo = 6.75e-9, is = 1e-30, m = 0.88, vj = 1.45,fc=0.5) m..model mmedmod = (type=_n, vto = 2.93, kp = 13.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.23, kp = 96, is=1e-30,tox=1, lambda = 0.06) DPLCAP m..model mweakmod = (type=_n, vto = 2.35, kp = 0.02, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -9, voff = -4) 10 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4, voff = -9) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0)
RSLC2
LDRAIN 5 RLDRAIN RDBREAK 72 DBREAK 11 MWEAK MMED MSTRO EBREAK + 17 18 71 RDBODY DRAIN 2 RSLC1 51 ISCL
c.ca n12 n8 = 5.55e-9 c.cb n15 n14 = 5.55e-9 c.cin n6 n8 = 3.45e-9 d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1
GATE 1 ESG
6 8 + LGATE EVTEMP RGATE + 18 22 9 20 6 EVTHRES + 19 8
50 RDRAIN 21 16
DBODY
l.ldrain n2 n5 = 1e-9 RLGATE l.lgate n1 n9 = 2.6e-9 l.lsource n3 n7 = 1.1e-9 k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085 m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 8e-4, tc2 = 4e-6 res.rdbody n71 n5 = 1.4e-3, tc1 = 2.75e-3, tc2 = 5e-6 res.rdbreak n72 n5 = 2.8e-2, tc1 = -4e-3, tc2 = 1e-6 res.rdrain n50 n16 = 1e-4, tc1 = 1.5e-1, tc2 = 6.5e-4 res.rgate n9 n20 = 0.36 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26 res.rlsource n3 n7 = 11 res.rslc1 n5 n51 = 1e-6, tc1 = 1e-4, tc2 = 1.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.15e-3, tc1 = 1e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 1.45e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -2.6e-5 spe.ebreak n11 n7 n17 n18 = 56.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3.5)) } }
S1A 12 S1B CA 13 + EGS 6 8 13 8 S2A 14 13 S2B
CIN
8
-
LSOURCE 7 RLSOURCE
SOURCE 3
RSOURCE RBREAK 17 18 RVTEMP CB + EDS 5 8 14 IT 19
15
VBAT +
-
-
8 RVTHRES
22
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
HUF75345G3, HUF75345P3, HUF75345S3S SPICE Thermal Model
REV 5 February 1999 HUF75345 CTHERM1 th 6 6.3e-3 CTHERM2 6 5 1.5e-2 CTHERM3 5 4 2.0e-2 CTHERM4 4 3 3.0e-2 CTHERM5 3 2 8.0e-2 CTHERM6 2 tl 1.5e-1 RTHERM1 th 6 5.0e-3 RTHERM2 6 5 1.8e-2 RTHERM3 5 4 5.0e-2 RTHERM4 4 3 8.5e-2 RTHERM5 3 2 1.0e-1 RTHERM6 2 tl 1.1e-1
RTHERM1 CTHERM1 th JUNCTION
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUF75345 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.3e-3 ctherm.ctherm2 6 5 = 1.5e-2 ctherm.ctherm3 5 4 = 2.0e-2 ctherm.ctherm4 4 3 = 3.0e-2 ctherm.ctherm5 3 2 = 8.0e-2 ctherm.ctherm6 2 tl = 1.5e-1 rtherm.rtherm1 th 6 = 5.0e-3 rtherm.rtherm2 6 5 = 1.8e-2 rtherm.rtherm3 5 4 = 5.0e-2 rtherm.rtherm4 4 3 = 8.5e-2 rtherm.rtherm5 3 2 = 1.0e-1 rtherm.rtherm6 2 tl = 1.1e-1 }
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
(c)2005 Fairchild Semiconductor Corporation
HUF75345G3, HUF75345P3, HUF75345S3S Rev. B1
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.
ACExTM FAST ActiveArrayTM FASTrTM BottomlessTM FPSTM CoolFETTM FRFETTM CROSSVOLTTM GlobalOptoisolatorTM DOMETM GTOTM EcoSPARKTM HiSeCTM E2CMOSTM I2CTM EnSignaTM i-LoTM FACTTM ImpliedDisconnectTM FACT Quiet SeriesTM
IntelliMAXTM ISOPLANARTM LittleFETTM MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXProTM Across the board. Around the world.TM OPTOLOGIC OPTOPLANARTM The Power Franchise PACMANTM Programmable Active DroopTM
POPTM Power247TM PowerEdgeTM PowerSaverTM PowerTrench QFET QSTM QT OptoelectronicsTM Quiet SeriesTM RapidConfigureTM RapidConnectTM SerDesTM SILENT SWITCHER SMART STARTTM
SPMTM StealthTM SuperFETTM SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic TINYOPTOTM TruTranslationTM UHCTM UltraFET UniFETTM VCXTM
DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component is any component of a life 1. Life support devices or systems are devices or support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
Rev. I15


▲Up To Search▲   

 
Price & Availability of HUF75345S3ST

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X